If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-100X-18400=0
a = 1; b = -100; c = -18400;
Δ = b2-4ac
Δ = -1002-4·1·(-18400)
Δ = 83600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{83600}=\sqrt{400*209}=\sqrt{400}*\sqrt{209}=20\sqrt{209}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{209}}{2*1}=\frac{100-20\sqrt{209}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{209}}{2*1}=\frac{100+20\sqrt{209}}{2} $
| 4x2+16x+6=0 | | 4x2+16x+6=-0 | | 3x-8^x=60 | | 7x-15+7x-15=-210 | | -8(1-7p)=8p+40 | | 421=7d-6 | | 8+8h=-3h+3 | | X^2+2x-356=0 | | 3(m-2)=-2m+14 | | 9(v-2)=63 | | 5x-8+5x-8=80 | | (x-4)+(x-9)=5 | | 18b-11=8b-4 | | 2+2x=1x | | 6m+22/2=14 | | 8x2+32x-96=0 | | 6x+27=87 | | 25-u=278 | | 5+a/6=6 | | 0.50x+0.37(70)=27.5 | | 2(x+8)+6=22 | | -y/2=-16 | | 3x=1/2=5/2 | | 2/3x-3/2x=3/4x-9 | | 30×1-x×0.25=27.25 | | 0.5(10+12n)=1/3(15n+15) | | 4x^2+3^2=1225 | | x-8/10=40 | | y+10=4y-8 | | 3(x)+6=78 | | 2y2-11y-5=(y-5)2 | | 8y+12=29 |